Build Trait Data from the LEDA Traitbase
build_trait_data_LEDA.Rd
Build a dataframe of trait data for various plant species of interest using LEDA trait database.
Arguments
- columns_to_select
A character vector specifying one or more trait columns to include in the output. Valid options are:
"SLA"
(specific leaf area, mm^2/mg),"seed_mass"
(mg),"leaf_mass"
(mg), and"canopy_height"
(m). The function will return an error if any specified columns are not available.- genera
Optional character vector specifying genera to filter by. If
NULL
(default), no filtering is applied. Genera are matched by underscore notation in species names (e.g.,"Acer_"
matches Acer species).
Value
A dataframe including mean trait data for all species or species of choice in respective columns titled by trait name.
Details
The function reads trait data from four different data files, including SLA (Specific Leaf Area), seed mass, leaf mass, and canopy height. It then combines these data frames into a single data frame based on the species name.
References
Kleyer M, et al. (2008). “The LEDA Traitbase: a database of life-history traits of the Northwest European Flora.” Journal of Ecology. doi:10.1111/j.1365-2745.2008.01430.x .
Author
Alivia G Nytko, anytko@vols.utk.edu
Examples
# Build dataframe using specific leaf area (SLA) trait data across all available species
all_traits <- build_trait_data(columns_to_select = "SLA")
#> Error in build_trait_data(columns_to_select = "SLA"): could not find function "build_trait_data"
# Build dataframe using seed mass trait data across maple species
maple_traits <- build_trait_data(columns_to_select = "seed_mass", genera = "Acer_")
#> Error in build_trait_data(columns_to_select = "seed_mass", genera = "Acer_"): could not find function "build_trait_data"
print(maple_traits)
#> Error: object 'maple_traits' not found
# Build dataframe using canopy height for major tree species
tree_traits <- build_trait_data_LEDA(columns_to_select = "canopy_height", genera = c("Acer_", "Quercus_", "Populus_", "Ulmus_", "Pinus_", "Alnus_", "Betula_", "Salix_", "Abies_", "Fraxinus_", "Tsuga_", "Prunus_"))
print(tree_traits)
#> # A tibble: 105 × 2
#> species_name canopy_height
#> <chr> <dbl>
#> 1 Abies_alba 50
#> 2 Abies_grandis 50
#> 3 Abies_nordmanniana 30
#> 4 Acer_campestre 13.4
#> 5 Acer_monspessulanum 11
#> 6 Acer_negundo 11.5
#> 7 Acer_opalus 12
#> 8 Acer_platanoides 26.2
#> 9 Acer_pseudoplatanus 27.3
#> 10 Acer_saccharinum 40
#> # ℹ 95 more rows